Label-free SERS detection of relevant bioanalytes on silver-coated carbon nanotubes: The case of cocaine.

نویسندگان

  • Marcos Sanles-Sobrido
  • Laura Rodríguez-Lorenzo
  • Silvia Lorenzo-Abalde
  • Africa González-Fernández
  • Miguel A Correa-Duarte
  • Ramón A Alvarez-Puebla
  • Luis M Liz-Marzán
چکیده

Surface-enhanced Raman scattering (SERS) spectroscopy can be used for the label-free determination and quantification of relevant small biometabolites that are hard to identify by conventional immunological methods, in the absence of labelling. In this work, detection is based on monitoring the vibrational changes occurring at a specific biointerface (a monoclonal antibody, mAb) supported on silver-coated carbon nanotubes (CNT@Ag). Engineered CNT@Ag play a key role, as they offer a stable substrate to support the biointerface, with a high density of hot spots. Proof of concept is demonstrated through the analysis and quantification of the main cocaine metabolite benzoylecgonine. These results open a new avenue toward the generation of portable sensors for fast ultradetection and quantification of relevant metabolites. The use of discrete particles (CNT@Ag@mAb) rather than rough films, or other conventional SERS supports, will also enable a safe remote interrogation of highly toxic sources in environmental problems or in biological fluids.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel label-free cocaine assay based on aptamer-wrapped single-walled carbon nanotubes

Objective(s): This paper describes a selective and sensitive biosensor based on the dissolution and aggregation of aptamer wrapped single-walled carbon nanotubes. We report on the direct detection of aptamer–cocaine interactions, namely between a DNA aptamer and cocaine molecules based on near-infrared absorption at λ807. Materials and Methods: First a DNA aptamer recognizing cocaine was non-co...

متن کامل

Electrochemical assay of anti-tetanus toxoid monoclonal antibody by silver enhancement of gold nanoparticles at carbon nanotubes modified glassy carbon electrode

Tetanus is caused by the toxin secreted by Clostridium tetani. Due to the rapid infection with this bacterium, it is so important to investigate the tetanus immunity of people. Therefore, electrochemical biosensors, as one of the most effective tools in this regard, have demanded characteristics such as being fast, simple, cost-effective and portable. However, their detection sensitivity is not...

متن کامل

A label-free cytosensor for the enhanced electrochemical detection of cancer cells using polydopamine-coated carbon nanotubes.

An electrochemical, label-free method was developed to detect folate receptor positive tumor cells by specific recognition of a polydopamine-coated carbon nanotubes-folate nanoprobe to cell-surface folate receptors. This strategy offers great promise to extend its application in studying the interaction of ligand and cell-surface receptor.

متن کامل

Label-free detection of Phytophthora ramorum using surface-enhanced Raman spectroscopy.

In this study, we report on a novel approach for the label-free and species-specific detection of the plant pathogen Phytophthora ramorum from real samples using surface enhanced Raman scattering (SERS). In this context, we consider the entire analysis chain including sample preparation, DNA isolation, amplification and hybridization on SERS substrate-immobilized adenine-free capture probes. Th...

متن کامل

Label-free mapping of single bacterial cells using surface-enhanced Raman spectroscopy.

Here we presented a simple, rapid and label-free surface-enhanced Raman spectroscopy (SERS) based mapping method for the detection and discrimination of Salmonella enterica and Escherichia coli on silver dendrites. The sample preparation was first optimized to maximize sensitivity. The mapping method was then used to scan through the bacterial cells adsorbed on the surface of silver dendrites. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 1 1  شماره 

صفحات  -

تاریخ انتشار 2009